PITHAPUR RAJAH'S GOVERNMENT COLLEGE (A), KAKINADA

DEPARTMENT OF MATHEMATICS

Laveti. Surya Bala Ratna Bhanu _{M.Sc} ,B.Ed

Lecturer in Mathematics

Phone:7330946793,9704768781.

Email: bhanuasdgdc@gmail.com

Addition Modulo m: Let $a, b \in \mathbb{Z}$ and m be a fixed positive integer. If r is the reminder $(0 \le r < m)$ when a + b is divided by m, we define ' $a +_m b$ ' = r and we read $a +_m b$ as a 'addition modulo m'.

Examples:

- i. $20 +_6 5 = 1$ since 20+5=4(6)+1 i.e., 1 is the remainder when 20+5 divided by 6.
- ii. $24 +_5 4 = 3$.
- iii. $2 +_7 3 = 5$
- iv. $-32+_45 = 1$ since $-32+_5=(-7)(4)=1$.

Congruence: Let $a, b \in \mathbb{Z}$ and m be a fixed positive integer. If a - b is divisible by m we say that a is congruent to b modulo m and we write it as $a \equiv b \pmod{m}$. This relation between the integers a and b is called congruence modulo m.

Thus:
$$a \equiv b \pmod{m} \iff m/a - b \text{ or } m/b - a$$

or

$$a - b = qm for q \in \mathbf{Z} and$$

$$a \not\equiv b \pmod{m} \Leftrightarrow m \text{ does not divide } a - b$$

or

$$a - b \neq km$$
 for $k \in \mathbf{Z}$

Note: If $a \equiv b \pmod{m}$, then we get same remainder if a and b are separately divided by m. For example, if $22 \equiv 13 \pmod{3}$, then 1 is the remainder when 22 and 13 are separately divided by 3.

Definition: $z_m = \{0,1,2,3,.....(m-1)\}$ is called the **complete set of least** positive residues modulo m or simply set of residues modulo m.

Problem: Prove that set $G = \{0,1,2,3,4\}$ is an abelian group of order 5 w.r.to addition modulo 5.

Solution: Given $G = \{0,1,2,3,4\}$

The composition table for \boldsymbol{G} w.r.to $+_5$ is as follows:

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

- i) Since all entries in the composition table are elements in **G**. Hence closure law holds in **G**.
- ii) Clearly \boldsymbol{G} is associative w.r.to $+_5$.
- iii) 0 is the identity element in \boldsymbol{G}
- iv) Inverse of 0 is 0

Inverse of 1 is 4

Inverse of 2 is 3

Inverse of 3 is 2

Inverse of 4 is 1

v) Cleary \boldsymbol{G} is commutative w.r.to $+_5$.

Hence $(G, +_5)$ is an abelian group.

Multiplication Modulo m: If a and b are integers and p is a fixed positive integer and ab is divided by p such that r is the remainder $(0 \le r < p)$. we define

 $a \times_p b = r$.we read $a \times_p b$ as a "multiplication modulo p" b.

Examples:

- i. $20 \times_6 5 = 4$ (since $20 \times 5 = 100 = 16(6) + 4$ i.e., 4 is the remainder when 100 is divided by 6).
- ii. $24 \times_5 4 = 1$.
- ii. $2 \times_7 3=6$.

Problem: Prove that the set $G = \{1, 2, 3, 4, 5, 6\}$ is a finite abelian group of order 6 w.r.to. \times_7 .

Solution: Given $G = \{1,2,3,4,5,6\}$.

The composition table for \boldsymbol{G} w.r.to \times_7 is as follows:

	1	2	3	4	5	6
× ₇						
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

i) Since all entries in the composition table are elements in \boldsymbol{G} .

Hence closure law holds in **G**

- ii) Clearly \boldsymbol{G} is associative w.r.to \times_7 .
- iii) 1 is the identity element in \boldsymbol{G}
- iv) Inverse of 1 is 1

Inverse of 2 is 4

Inverse of 3 is 5

Inverse of 4 is 2

Inverse of 5 is 3

Inverse of 6 is 6

v) Cleary **G** is commutative w.r.to \times_7 .

Hence (G, \times_7) is an abelian group.

Exercise Problems:

> Find the order of each element of the group $G = \{0,1,2,3,4,5\}$ the composition being addition modulo 6

Show that the set of integers { 1,3,5,7 } form an abelian group w.r.t X_8

Thank you